Stochastic Discrete Clenshaw-Curtis Quadrature
نویسندگان
چکیده
The partition function is fundamental for probabilistic graphical models—it is required for inference, parameter estimation, and model selection. Evaluating this function corresponds to discrete integration, namely a weighted sum over an exponentially large set. This task quickly becomes intractable as the dimensionality of the problem increases. We propose an approximation scheme that, for any discrete graphical model whose parameter vector has bounded norm, estimates the partition function with arbitrarily small error. Our algorithm relies on a near minimax optimal polynomial approximation to the potential function and a Clenshaw-Curtis style quadrature. Furthermore, we show that this algorithm can be randomized to split the computation into a high-complexity part and a low-complexity part, where the latter may be carried out on small computational devices. Experiments confirm that the new randomized algorithm is highly accurate if the parameter norm is small, and is otherwise comparable to methods with unbounded error.
منابع مشابه
Probabilistic Inference with Stochastic Discrete Clenshaw-Curtis Quadrature
The partition function is fundamental for probabilistic graphical models—it is required for inference, parameter estimation, and model selection. Evaluating this function corresponds to discrete integration, namely a weighted sum over an exponentially large set. This task quickly becomes intractable as the dimensionality of the problem increases. We propose an approximation scheme that, for any...
متن کاملNyström-Clenshaw-Curtis quadrature for integral equations with discontinuous kernels
A new highly accurate numerical approximation scheme based on a Gauss type Clenshaw-Curtis quadrature for Fredholm integral equations of the second kind
متن کاملFast construction of Fejér and Clenshaw-Curtis rules for general weight functions
The main purpose of this paper is to compute the weights of Clenshaw-Curtis and Fejér type quadrature rules via DCT and DST, for general weight functions w. The approach is different from that used by Waldvogel in [25], where the author considered the computation of these sets only for the Legendre weight w ≡ 1 using DFT arguments.
متن کاملOn the Convergence Rates of Gauss and Clenshaw-Curtis Quadrature for Functions of Limited Regularity
We study the optimal general rate of convergence of the n-point quadrature rules of Gauss and Clenshaw–Curtis when applied to functions of limited regularity: if the Chebyshev coefficients decay at a rate O(n−s−1) for some s > 0, Clenshaw–Curtis and Gauss quadrature inherit exactly this rate. The proof (for Gauss, if 0 < s < 2, there is numerical evidence only) is based on work of Curtis, Johns...
متن کاملIs Gauss Quadrature Better than Clenshaw-Curtis?
We compare the convergence behavior of Gauss quadrature with that of its younger brother, Clenshaw–Curtis. Seven-line MATLAB codes are presented that implement both methods, and experiments show that the supposed factor-of-2 advantage of Gauss quadrature is rarely realized. Theorems are given to explain this effect. First, following O’Hara and Smith in the 1960s, the phenomenon is explained as ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016